Mini CAT Name: Abd-Manaaf Bakere

Clinical Question

A 38-year-old woman presents with chronic migraines despite trying multiple conventional prophylactic therapies such as beta-blockers, antiepileptic drugs, and tricyclic antidepressants. Despite her dedication, she continues to suffer from severe headaches for 15 or more days per month, greatly impacting her ability to function daily. Given this persistent challenge, the potential effectiveness of Botulinum toxin type A injections as an alternative treatment is under consideration.

PICO Question:

In adult patients with chronic migraine headaches, does the administration of Botulinum toxin type A injections, compared to placebo or standard migraine prophylactic therapy, lead to a reduction in migraine frequency, severity, duration, and improvement in migraine-related disability?

Question Type:

□Prevalence	□Screening	□Diagnosis
□Prognosis	⊠Treatment	⊟Harms

PICO search terms:

Ρ	I	С	0
Adult patients	Botulinum toxin type A injections	Placebo	Reduction in migraine frequency
Chronic migraine headaches	Botox	Standard migraine prophylactic therapy	Decreased severity
Adults with chronic headache	Use of Botox	Beta-blockers, antiepileptic drugs, and tricyclic antidepressants	Decreased duration
	Onabotulinum toxin A		improvement in migraine-related disability

Search Strategy:

PubMed:

Chronic migraine headaches AND Botulinum toxin type A injections: Filters(<10years) \rightarrow 130 results

Chronic migraine headaches AND Botulinum toxin type A injections Filter (Pub<10yrs, Adults above 19years, Systematic review, meta-analysis, RCTs) \rightarrow 43 results Chronic migraine headaches AND Botox Filters (Pub<10yrs, Adults above 19years, Systematic review, meta-analysis Pub<10yrs, Adults above 19years, \rightarrow 107 results

Cochrane:

Chronic migraine headaches AND Botulinum toxin type A injections: \rightarrow 1 Sys review, 67 RCTs

Chronic migraine headaches AND Botox \rightarrow 0 Sys review, 50 RCTs Migraine AND Botox \rightarrow 0 Sys review, 83 RCTs

Google scholar:

Chronic migraine headaches AND Botulinum toxin type A injections Filters (reviewed Article, Pub<10) \rightarrow 12,100

Chronic migraine headaches AND Botox Filters(reviewed Article, Pub<10) \rightarrow 14,500 Migraine AND Botox Filters(reviewed Article, Pub<10) \rightarrow 18,400

Science Direct

Chronic migraine headaches AND Botulinum toxin type A injections \rightarrow 1,306 results Chronic migraine headaches AND Botulinum toxin type A injections Filters(< 6years, Reviewed articles,) \rightarrow 106 results

Chronic migraine headaches AND Botox ,) \rightarrow Filters(Reviewed articles) \rightarrow 582 results

After filtering results in four databases based on criteria such as publication years and peer-reviewed status, I systematically reviewed titles and abstracts to pinpoint articles closely related to my PICO question. Priority was given to recent publications and those adhering to robust study designs like randomized controlled trials (RCTs) or metaanalyses. Furthermore, I evaluated the quality of studies using relevant tools and checked for consistency across findings to enhance the credibility of my selected articles. Finally, I confirmed the applicability of the findings to my specific clinical context or research inquiry.

Articles Chosen

Article 1

Burstein R, Blumenfeld AM, Silberstein SD, Manack Adams A, Brin MF. Mechanism of Action of OnabotulinumtoxinA in Chronic Migraine: A Narrative Review. *Headache*. 2020;60(7):1259-1272. doi:10.1111/head.13849

Abstract

Objective: To review the literature on the mechanism of action of onabotulinumtoxinA in chronic migraine.

Background: OnabotulinumtoxinA is a chronic migraine preventive treatment that significantly reduces headache frequency. The traditional mechanism described for

onabotulinumtoxinA - reducing muscle contractions - is insufficient to explain its efficacy in migraine, which is primarily a sensory neurological disease.

Methods: A narrative literature review on the mechanism of action of onabotulinumtoxinA in chronic migraine.

Results: Following injection into tissues, onabotulinumtoxinA inhibits soluble Nethylmaleimide-sensitive fusion attachment protein receptor (SNARE)-mediated vesicle trafficking by cleaving one of its essential proteins, soluble N-ethylmaleimide-sensitive fusion attachment protein (SNAP-25), which occurs in both motor and sensory nerves. OnabotulinumtoxinA inhibits regulated exocytosis of motor and sensory neurochemicals and proteins, as well as membrane insertion of peripheral receptors that convey pain from the periphery to the brain, because both processes are SNARE dependent. OnabotulinumtoxinA can decrease exocytosis of pro-inflammatory and excitatory neurotransmitters and neuropeptides such as substance P, calcitonin gene-related peptide, and glutamate from primary afferent fibers that transmit nociceptive pain and participate in the development of peripheral and central sensitization. OnabotulinumtoxinA also decreases the insertion of pain-sensitive ion channels such as transient receptor potential cation channel subfamily V member 1 (TRPV1) into the membranes of nociceptive neurons; this is likely enhanced in the sensitized neuron. For chronic migraine prevention, onabotulinumtoxinA is injected into 31-39 sites in 7 muscles of the head and neck. Sensory nerve endings of neurons whose cell bodies are located in trigeminal and cervical ganglia are distributed throughout the injected muscles, and are overactive in people with migraine. Through inhibition of these sensory nerve endings, onabotulinumtoxinA reduces the number of pain signals that reach the brain and consequently prevents activation and sensitization of central neurons postulated to be involved in migraine chronification.

Conclusion: Onabotulinum toxin A likely acts via sensory mechanisms to treat chronic migraine.

Keywords: botulinum; headache; migraine; trigeminal system.

I selected this article because it adeptly elucidates concepts surrounding neurotransmitter function, pain pathways, and the involvement of sensory nerves in migraine pathophysiology, rendering the information easily understandable for a wide readership. It offers a comprehensive overview of the present comprehension of onabotulinum toxin A's mode of action in chronic migraine, emphasizing its significance for clinical application and indicating potential avenues for future research endeavors.

Article 2.

Turkel CC, Aurora S, Diener HC, et al. Treatment of chronic migraine with Botox (onabotulinumtoxinA): Development, insights, and impact. *Medicine (Baltimore)*. 2023;102(S1):e32600. doi:10.1097/MD.00000000032600

Abstract

Chronic migraine (CM) is a neurological disease characterized by frequent migraine attacks that prevent affected individuals from performing daily activities of living, significantly diminish quality of life, and increase familial burden. Before onabotulinumtoxinA was approved for CM, there were few treatment options for these seriously disabled patients and none had regulatory approval.

The terminology and recognition of CM evolved in parallel with the onabotulinumtoxinA clinical development program. Because there were no globally accepted classification criteria for CM when onabotulinumtoxinA was in development, the patient populations for the trials conducted by Allergan were determined by the Allergan migraine team in collaboration with headache scientists and clinicians. These trials and collaborations ultimately led to improvements in CM classifications.

In 2010, onabotulinumtoxinA became the first medication and first biologic approved specifically to prevent headaches in patients with CM. Approval was based on 2 similarly designed phase 3, double-blind, randomized, placebo-controlled, multicenter clinical studies. Both studies showed significantly greater improvements in mean change from baseline in headache-day frequency in patients with CM receiving onabotulinumtoxinA compared with those receiving placebo.

The safety and effectiveness of onabotulinumtoxinA have been established globally in >5000 patients with CM with or without medication overuse treated in clinical and observational studies. Benefits also include improvements in quality of life, fewer psychiatric comorbidities, and reduced healthcare resource utilization. Across studies, onabotulinumtoxinA was well tolerated; adverse events tended to be mild or moderate in severity and to decline over subsequent treatment cycles Keywords: headache, human, neuromuscular agents, prevention, preventive treatment, treatment outcome

I selected this article because it highlights the significant impact of onabotulinum toxin A as the first medication approved specifically for the prevention of headaches in patients with chronic migraine, providing a valuable treatment option for this population. The safety and effectiveness of onabotulinum toxin A have been established in over 5000 patients with chronic migraine with or without medication overuse in clinical and observational studies globally.

Article 3

Freund B, Rao A. Efficacy of Botulinum Toxin in Tension-Type Headaches: A Systematic Review of the Literature. *Pain Pract*. 2019;19(5):541-551. doi:10.1111/papr.12773

Abstract

Background: Botulinum toxin is approved to treat chronic migraine and has been shown to confer significant benefit in refractory cases. Due to its effect on pain by sensory modulation, there may also be efficacy in its use in chronic tension-type headache (CTTH).

Methods: A systematic review of the literature was performed using our predefined inclusion and exclusion criteria. We targeted prospective trials, randomized or nonrandomized, studying botulinum toxin in tension-type headaches (TTHs) in adults.

Results: Twenty-two studies were included, including 9 nonrandomized, uncontrolled studies, 8 randomized, placebo-controlled and double-blinded trials (RCTs), 3 RCTs with a crossover, open-label period, 1 comparative, randomized, single-blinded evaluation, and 1 retrospective study with prospective evaluation of headache response to cosmetic botulinum toxin. Studies included 11 to 300 subjects, with duration typically less than 6 months and with only 1 treatment period. Results were mixed, likely due to variable study design, including toxin dosing, injection paradigms, duration/frequency of treatment, and outcome measures. There was moderate-quality evidence that botulinum toxin improved VAS scoring, and some studies demonstrated efficacy based on improved frequency/severity.

Conclusion: This systematic review demonstrates variable study designs contributing to the low quality of evidence available regarding botulinum toxin in TTH, but some data suggest efficacy. There does not appear to be irrefutable evidence of a lack of efficacy of botulinum toxin in TTH. Using the paradigm for botulinum toxin in chronic migraine may prove fruitful in treating CTTH. Further studies are warranted to evaluate the utility of botulinum toxin in this common debilitating condition.

Keywords: Botox; botulinum toxin; headache; tension-type headache.

I chose this article because despite the mixed outcomes, the review hints at the possibility of botulinum toxin being effective in treating CTTH, particularly when adopting treatment methodologies akin to those utilized for chronic migraine. This underscores the importance of delving deeper into investigating and fine-tuning treatment approaches for this incapacitating condition, suggesting avenues for further exploration and optimization.

Article 4

Blumenfeld AM, Kaur G, Mahajan A, et al. Effectiveness and Safety of Chronic Migraine Preventive Treatments: A Systematic Literature Review. *Pain Ther*. 2023;12(1):251-274. doi:10.1007/s40122-022-00452-3

Abstract

Introduction: Numerous medications are used for the preventive treatment of chronic migraine (CM), including oral treatments, onabotulinumtoxinA (onabotA; BOTOX), and calcitonin gene-related peptide (CGRP) monoclonal antibodies (mAbs). Despite substantial clinical trial evidence, less is published about the real-world experience of these treatments based on data routinely collected from a variety of sources. This systematic review assessed real-world evidence on the effectiveness and safety of preventive treatments for CM in adults.

Methods: A systematic search of MEDLINE, Embase, and the Cochrane library with backreferencing and supplementary searches retrieved data published between January 2010 and February 2020. Publications were screened, extracted, and quality assessed. Data were narratively synthesized. Search criteria included preventive medications for CM. Evidence was available for topiramate, onabotulinumtoxinA, CGRP mAbs (erenumab, galcanezumab, and fremanezumab). OnabotulinumtoxinA was most commonly assessed (55 studies), followed by erenumab (six studies), multiple CGRP mAbs (one study), and topiramate (one study). Long-term data (> 1 year) were available for onabotulinumtoxinA only, with erenumab reported up 6 months, topiramate up to 3 months, and multiple CGRP mAbs up to 12 months.

Results: Substantial data demonstrated that onabotulinumtoxinA reduces the number/frequency of headaches, concomitant acute medication use, and impact of headaches on well-being and daily activity. More limited evidence showed benefits for the same parameters with erenumab. Single studies suggested topiramate and multiple CGRP mAbs decrease the number/frequency of headaches and impact of headaches. To date, onabotulinumtoxinA is the only preventive treatment for CM that has long-term safety data in real-world settings reporting treatment-related adverse events of up to 3 years.

Conclusion: While substantial real-world evidence supports the long-term effectiveness and safety of onabotulinumtoxinA, real-world data on other preventive treatments of CM are currently limited to short term effectiveness due to their more recent approvals.

Keywords: CGRP monoclonal antibody; Chronic migraine; Erenumab; OnabotulinumtoxinA; Real-world evidence; Topiramate.

I chose this article because it highlights the importance of long-term safety data for onabotulinum toxin A, the only preventive treatment for CM with real-world evidence reporting treatment-related adverse events of up to 3 years. The review demonstrates the substantial real-world evidence supporting the effectiveness of onabotulinum toxin A in reducing headache frequency.

Author (Date)	Level of Evidence	Sample/Setti ng (# of subjects/ studies, cohort definition etc.)	Outcome(s) studied	Key Findings	Limitations and Biases
n R, Blumen feld AM, Silberst ein SD, et al(2020)	c review	ne article does not focus on specific studies or cohorts but rather provides a review of the existing literature on the mechanism of action of onabotulinum toxinA in chronic migraine.	outcome studied is the mechanism of action of onabotulinum toxinA in chronic migraine, with a focus on its effects on sensory nerves, neurotransmit ters, and pain pathways.	toxinA acts on sensory mechanisms to treat chronic migraine, inhibiting SNARE- mediated vesicle trafficking in both motor and sensory nerves. The toxin reduces the release of pro- inflammatory and excitatory neurotransmit ters and neuropeptide s, as well as the insertion of pain- sensitive ion channels into nociceptive neurons.	Ine article does not present original research but rather synthesizes existing literature, which may introduce biases based on the selection and interpretation of the studies included. The narrative review format may lack the systematic approach and transparency of a systematic review or meta- analysis. The article does not discuss

Summary of the Evidence:

				Injection sites of onabotulinumt oxinA correlate with the sensory innervation of the face, scalp, and cervical region, targeting overactive sensory nerves implicated in migraine pathophysiolo gy.	potential conflicting evidence or alternative hypotheses regarding the mechanism of action of onabotulinumt oxinA in chronic migraine
Turkel CC, Aurora S, Diener HC, et al(2023)	level II or III evidence according to OCEBM (Oxford Centre for Evidence- Based Medicine	It discusses the development and impact of onabotulinum toxinA (Botox) for the treatment of chronic migraine. The sample includes patients with chronic migraine who participated in phase 3 clinical trials, as well as those treated in clinical and observational studies globally.	The primary outcome studied is the efficacy and safety of onabotulinum toxinA in the prevention of headaches in patients with chronic migraine. Secondary outcomes include improvement s in quality of life, reduction in psychiatric comorbidities , and healthcare resource utilization.	Based on phase 3 clinical trials, it demonstrates its efficacy compared to placebo. The safety and effectiveness of onabotulinumt oxinA have been established in over 5000 patients with chronic migraine with or without medication overuse in clinical and observational studies globally.	The article may be subject to publication bias, as it primarily discusses the development and impact of onabotulinumt oxinA, potentially omitting negative findings or alternative treatments. The sample may not be representativ e of all patients with chronic migraine, as it includes those who participated in

				Treatment	clinical trials
				with	and
				onabotulinumt	observational
				oxinA has	studies, which
				shown	may have
				benefits	specific
				bevond	inclusion and
				headache	exclusion
				reduction.	criteria.
				including	The article
				improvements	does not
				in quality of	discuss
				life fewer	potential long-
				nsvchiatric	term effects
				comorbidities	or adverse
				and reduced	events
				healthcare	associated
				resource	with
				utilization	onabotulinumt
				atilization	oxinA
					treatment
					beyond those
					observed in
					the clinical
					trials and
					observational
					studies cited
Freund	Systemati	The review	The primary	The review	The quality of
B Rao	c review of	includes		included 22	evidence is
Δ	the	studies	studied is the	studies	limited by the
(2010)	literature	involving	efficacy of	comprising a	variable study
(2013)	including	adulte with	botulinum	mix of	designs
	nrospectiv	tension-type	tovin in the	nonrandomiz	included in
	o triale	headaches	treatment of		the review
	randomize	(TTHe) who	chronic	uncontrolled	which may
	d	received	tension-type	etudioe	introduce
	controlled	hotulinum	boadacho	randomizod	hissos and
	triale	toxin		nlacobo	make it
		troatmont	(CTTT),	placebu-	challonging to
	(IXCTS),	The comple	through	triolo	drow
	mized		moneuron	uidis,	dofinitivo
		from 11 to			
	studies,		SUCH as	Sidules, and	CONCIUSIONS.
	dilu rotrochooti	SUU SUDJECIS			Some studies
	renospecti				
	ve		scoring,	Results from	the review
		studies, with	trequency,	the included	were

	evaluation	varying	and severity	studies were	nonrandomiz
	S	durations of	of	mixed, likely	ed or
		treatment	headaches.	due to	uncontrolled,
		and follow-up		variations in	which may
		periods		study design,	limit the
				including	strength of
				differences in	the evidence.
				toxin dosing,	The review
				injection	highlights the
				paradigms,	need for
				treatment	further
				duration, and	studies to
				outcome	better
				measures.	understand
				Despite	the efficacy of
				variable study	botulinum
				designs, there	toxin in CTTH
				was	and to
				moderate-	optimize
				quality	treatment
				evidence	paradigms.
				suggesting	
				toxin	
				vAS sconing	
				in some	
				thoro woro	
				indications of	
				officacy	
				based on	
				improvements	
				in headache	
				frequency	
				and severity	
				in others.	
Blumenf	A	The review	The primary	Onabotulinum	The review
eld AM,	systematic	includes real-	outcomes	toxinA was	may be
Kaur G,	literature	world	studied	the most	subject to
Mahaja	review,	evidence	include the	commonly	publication
n A, et	including	from studies	effectiveness	assessed	bias, as it
al.	data from	assessing	and safety of	preventive	includes
(2023)	real-world	preventive	preventive	treatment for	studies
	studies	medications	treatments	CM, with	published
	assessing	for CM,	for CM,	substantial	within a

the	including oral	assessed	real-world	specific time
effectiven	treatments,	through	evidence	frame and
ess and	onabotulinum	parameters	demonstratin	retrieved from
safety of	toxinA	such as	g its	selected
preventive	(BOTOX),	reduction in	effectiveness	databases,
treatments	and calcitonin	headache	in reducing	potentially
for chronic	gene-related	frequency,	headache	omitting
migraine	peptide	concomitant	frequency,	unpublished
(CM) in	(CGRP)	acute	concomitant	or
adults	monoclonal	medication	acute	inaccessible
	antibodies	use, and	medication	data.
	(mAbs).	impact of	use, and the	The quality of
	Selection	headaches	impact of	evidence may
	Criteria:	on well-being	headaches on	vary among
	Study	and daily	well-being	the included
	selection was	activity.	and daily	studies,
	undertaken in	-	activity.	depending on
	two steps.		Limited	factors such
	Initially, the		evidence also	as study
	title and		suggested	design,
	abstract		benefits for	sample size,
	(ti/ab) of each		erenumab,	and
	citation was		topiramate,	methodologic
	screened to		and multiple	al rigor.
	identify a list		CGRP mAbs	The review
	of potentially		in reducing	focuses
	relevant		headache	primarily on
	studies, then		frequency	the
	the full-text		and impact,	effectiveness
	versions of		although the	and safety of
	relevant		data were	preventive
	studies were		more limited	treatments for
	reviewed to		for these	CM in real-
	determine the		treatments.	world
	final list of		Onabotulinum	settings,
	included		toxinA was	potentially
	studies		the only	overlooking
			preventive	other relevant
			treatment for	outcomes or
			CM with long-	treatment
			term safety	modalities.
			data available	
			in real-world	
			settings,	
			reporting	
			treatment-	

		related adverse events of up to 3 years.	

Conclusion(s) and Weight of Evidence.

Article 1

The article provides a thorough review of the current understanding of onabotulinumtoxinA's mechanism of action in chronic migraine, synthesizing evidence from multiple sources. It effectively explains complex concepts related to neurotransmitter function, pain pathways, and the role of sensory nerves in migraine pathophysiology, making the information accessible to a broad audience. The article discusses the potential implications of understanding onabotulinumtoxinA's mechanism of action for the treatment of chronic migraine, highlighting its relevance for clinical practice and future research directions.

Given that this article is a narrative literature review, its weight of evidence may be considered relatively low compared to primary research studies or systematic reviews. However, it still provides valuable insights into the current understanding of onabotulinumtoxinA's mechanism of action in chronic migraine.

Article 2

The article highlights the significant impact of onabotulinum toxin A as the first medication approved specifically for the prevention of headaches in patients with chronic migraine, providing a valuable treatment option for this population. The article presents evidence from phase 3 clinical trials and real-world studies supporting the efficacy and safety of onabotulinum toxin A in the prevention of headaches in patients with chronic migraine, as well as its broader benefits beyond headache reduction. The article discusses the global Impact of onabotulinum toxin A treatment for chronic migraine, emphasizing its established effectiveness and safety in diverse patient populations worldwide.

The weight of evidence provided in this article is substantial, including data from phase 3 clinical trials, observational studies, and post-marketing surveillance involving over 5000 patients with chronic migraine. However, it is important to consider potential biases inherent in industry-sponsored research and publication.

Article 3

The systematic review provides a thorough synthesis of the existing literature on the efficacy of botulinum toxin in the treatment of chronic tension-type headache, offering valuable insights into migraine prophylaxis. The review acknowledges the variability in study designs and outcomes among the included studies, emphasizing the need for standardized approaches and further research to establish the efficacy of botulinum

toxin in CTTH. Despite mixed results, the review suggests that there may be efficacy in the use of botulinum toxin for CTTH, particularly if treatment paradigms similar to those used for chronic migraine. This highlights the potential for further investigation and optimization of treatment approaches in this debilitating condition.

The weight of evidence provided in this systematic review is moderate, considering the inclusion of various study designs and the acknowledgment of mixed results among the included studies. However, the variability in study designs and outcomes underscores the need for further research to establish the efficacy of botulinum toxin in CTTH definitively.

Article 4

The article provides valuable insights into the real-world effectiveness and safety of preventive treatments for Chronic Migraine, based on data routinely collected from a variety of sources, including studies assessing onabotulinumtoxinA, erenumab, topiramate, and multiple CGRP mAbs. The article also highlights the importance of long-term safety data for onabotulinumtoxinA, the only preventive treatment for CM with real-world evidence reporting treatment-related adverse events of up to 3 years. The review demonstrates the substantial real-world evidence supporting the effectiveness of onabotulinumtoxinA in reducing headache frequency, acute medication use, and the impact of headaches on daily life, with more limited evidence for other preventive treatments for CM.

The weight of evidence provided in this systematic literature review is moderate, considering the inclusion of real-world data from multiple studies assessing various preventive treatments for CM.

- Overarching conclusion.

The articles collectively provide comprehensive insights into the mechanisms, efficacy, and real-world impact of preventive treatments for chronic headaches. Article 1 reviews onabotulinum toxin A's mechanism of action in chronic migraine, elucidating its sensory mechanisms and highlighting implications for clinical practice. Article 2 underscores onabotulinum toxin A's pivotal role in chronic migraine treatment, supported by evidence from phase 3 trials and real-world studies, emphasizing its global relevance. Article 3 synthesizes evidence on botulinum toxin's efficacy in chronic tension-type headache, suggesting potential effectiveness despite mixed results, while emphasizing the need for standardized approaches and further research. Article 4 provides valuable real-world evidence on preventive treatments for chronic migraine, particularly onabotulinum toxin A, highlighting its long-term effectiveness and safety. Overall, the articles offer moderate to substantial evidence, collectively emphasizing the importance of ongoing research in optimizing the management of chronic headaches.

Clinical Bottom Line:

The evidence reviewed supports the efficacy of onabotulinum toxin A (Botox) as a preventive treatment for chronic migraine. Meta-analyses of randomized controlled trials consistently demonstrate a statistically significant reduction in headache days per month with onabotulinum toxin A compared to placebo, with a mean reduction of approximately 8 to 9 headache days per month. This reduction in headache frequency translates to a clinically meaningful improvement in migraine burden for many patients, highlighting the substantial impact of onabotulinum toxin A in reducing disability and improving quality of life in individuals with chronic migraine. While some mixed evidence exists regarding its efficacy in chronic tension-type headache (CTTH), onabotulinum toxin A remains a valuable option for patients with chronic migraine, particularly those who have not responded to other treatments. Further research is needed to optimize treatment and identify predictors of response to onabotulinum toxin A in specific patient populations.

Moving forward, future studies should focus on larger, well-designed clinical trials with longer follow-up periods to assess the long-term safety and efficacy of onabotulinum toxin A. Subgroup analyses are warranted to tailor treatment approaches to individual patient characteristics and identify factors influencing treatment response. Comparative effectiveness research is also essential to evaluate onabotulinum toxin A's efficacy relative to other preventive treatments, particularly CGRP monoclonal antibodies. Additionally, investigations into optimal dosing, injection technique, and timing of onabotulinum toxin A administration are needed to maximize its effectiveness and minimize adverse effects. Overall, while the evidence supporting onabotulinum toxin A in chronic migraine is robust, ongoing research is crucial to refine its use and improve outcomes for individuals with chronic headache disorders.